

Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

Pour en savoir plus sur nos formations disponibles, veuillez visiter : <u>www.formav.co/explorer</u>

Brevet de Technicien Supérieur

CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE

U52 – Analyse d'une installation d'instrumentation, contrôle et régulation

controle et regulation	
	* A.
Durée : 3 heures	Coefficient : 5
<u>Matériel autorisé</u> :	
L'usage de tout modèle de calculatrice, a	avec ou sans mode examen, est autorisé.
Aucun document autorisé.	

Dès que le sujet vous est remis, assurez-vous qu'il est complet. Le sujet se compose de 24 pages, numérotées de 1/24 à 24/24.

S'il apparaît au candidat qu'une donnée est manquante ou erronée, il pourra formuler toutes les hypothèses qu'il jugera nécessaires pour résoudre les questions posées. Il justifiera, alors, clairement et précisément ces hypothèses.

Au début de chaque question seront précisées les annexes à utiliser

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE		Session 2018
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 1/24

L'évolution et la structure de l'industrie papetière

On pense que la fabrication du papier a débuté en Chine environ 100 ans avant J.-C. Chiffons, chanvre et herbes servaient de matières premières que l'on battait contre des mortiers en pierre en guise de première technique de séparation des fibres. Malgré la mécanisation qui a suivi, les méthodes de production discontinue et les sources de fibres naturelles sont restées inchangées jusque dans les années mille huit cent. Les premières machines à papier en continu ont été brevetées au début du XIXe siècle. Des méthodes de production de bois à pâte, source de fibres plus abondante que les chiffons et les herbes, ont été mises au point entre 1844 et 1884, et elles comprenaient l'abrasion mécanique ainsi que l'emploi de produits chimiques comme la soude, les sulfites et les sulfates (papier kraft). Ces changements ont été à l'origine des techniques modernes de fabrication de la pâte et du papier.

Source: Bureau International du Travail

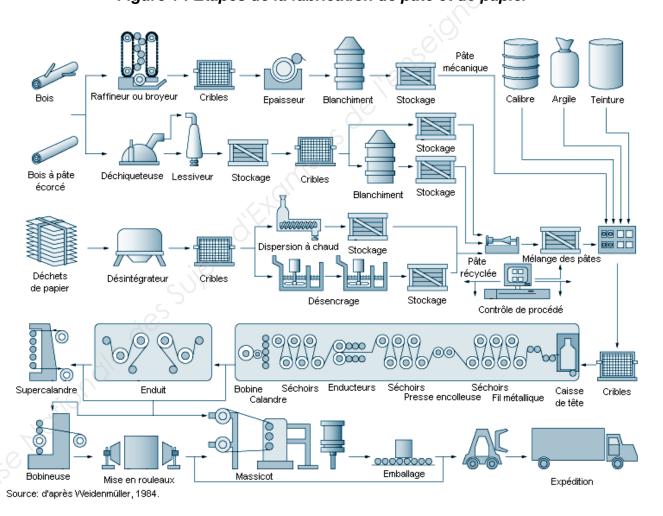


Figure 1 : Étapes de la fabrication de pâte et de papier

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE		Session 2018
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 2/24

CA52AII

Description de l'installation

On considère le schéma simplifié d'une installation (en ANNEXE 1) dont le but est de fabriquer du papier, de grammage donné, et avec un certain tonnage horaire. Le grammage est le poids d'un m² de feuille. Il dépend essentiellement de l'épaisseur de la feuille.

La pâte à papier livrée en cubes est réhydratée et malaxée dans les cuves appelées pulpeurs (repérées CUVE-1 et CUVE-2). Les cuves fonctionnent en alternance : lorsque l'une d'entre elles est en préparation, l'autre est en production.

La hauteur des cuves est de 10 m et leur diamètre de 6 m.

La concentration moyenne C₁ en pâte est de 100 g.L⁻¹. Un volume constant d'adjuvant V_a pris dans le réservoir RS-1 est ajouté au contenu de chaque cuve en fin de préparation.

La pâte ainsi réhydratée est acheminée vers le cuvier (CUVE-3) pour y être diluée avec de l'eau pure arrivant par une canalisation de diamètre 40 mm, de manière à ce que la concentration soit amenée à la valeur souhaitée C₃.

Pour un point de fonctionnement moyen, Q_3 (sortie cuve 3) est de 10 m³.h⁻¹, Q_{eau} de 9 m³.h⁻¹et Q_{pate} de 1 m³.h⁻¹. La valeur de C_3 (de valeur moyenne : 10 g.L⁻¹) est réglée par un correcteur repéré AIC1.

Lorsque la pâte est à la concentration souhaitée, elle est acheminée vers la caisse de tête dont le rôle est de doser le débit de la suspension vers la machine à papier proprement dite. Le niveau dans la caisse de tête est régulé par le régulateur LIC3. D'autre part la caisse de tête peut être mise sous pression d'air, (mesurée par PT4), par action sur deux vannes de régulation. La caisse de tête comporte dans sa partie inférieure une lèvre réglable en hauteur par laquelle s'écoule la pâte. On dose le débit de sortie en réglant la vitesse de jet V_i par un dispositif non représenté.

La pâte arrive alors sur une table de formation de la feuille. La table est composée d'une toile métallique sans fin, à maille très fine avançant à la vitesse de 3 m.s⁻¹. L'eau contenue dans la pâte est aspirée à travers la toile, les fibres de papier s'agglomèrent et la feuille se forme. Ensuite la feuille humide est décollée de la toile et pressée entre deux rouleaux. Afin d'éliminer le restant d'eau, la feuille ainsi formée est acheminée vers la sécherie constituée de rouleaux métalliques chauffés avec de la vapeur d'eau.

En sortie de sécherie, les caractéristiques (grammage, couleurs, largeur) de la feuille sont analysées : le grammage est mesuré par rayons gammas, la couleur et la largeur sont déterminées par des mesures optiques.

Après mesures et vérifications la feuille est bobinée.

On peut préciser que la feuille de papier avance à vitesse constante de 3 m.s⁻¹ et la longueur de la feuille est de 160 m.

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE		Session 2018
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 3/24

Il incombe au candidat de passer le temps nécessaire à l'élaboration de la réponse aux questions. La qualité de rédaction, la structuration de l'argumentation et la rigueur des calculs seront valorisées ainsi que les prises d'initiative même si elles n'aboutissent pas. Il convient donc que celle-ci apparaissent sur la copie.

Préparation de la pâte à papier

Pour traiter cette partie, utiliser les annexes1, 2, 3 et 10

La pâte à papier livrée en cubes est réhydratée et malaxée dans les cuves appelées pulpeurs (repérées CUVE-1 et CUVE-2). Celles-ci fonctionnent en alternance : Lorsque l'une d'entre elle est en préparation, l'autre est en production.

Des clapets anti-retour VC1 et VC2 placés à la sortie des cuves empêchent celles-ci de se vider l'une dans l'autre.

Un commutateur MA permet de commander le démarrage et l'arrêt du cycle. Le cycle peut commencer si l'autorisation de lancement du cycle (variable PRE) est à l'état logique "1" et si le niveau de la cuve RS-1 contenant les adjuvants est supérieur à un seuil minimum de 50 cm.

La vanne d'isolement de la cuve en préparation (Ev3 ou Ev4) est fermée, la vanne d'alimentation en pâte correspondante est ouverte (VP1 ou VP2) et l'agitateur (commande moteur Z1 ou Z2) est mis en fonctionnement. Lorsque la cuve est remplie (N1H au niveau haut), l'ajout de l'adjuvant s'effectue par ouverture de la vanne correspondante (Ev1 ou Ev2).

La mesure du volume d'adjuvant s'effectue à l'aide d'un capteur à palette La sortie signal du transmetteur délivre des impulsions qui sont comptées par l'automate (variable VAL_FT1). Lorsque le volume d'adjuvant a atteint la valeur de consigne (fixé en litre par la variable interne VAL_ADJ), la vanne correspondante à l'alimentation de la cuve en préparation (Ev1 ou Ev2) se ferme et l'agitation se poursuit pendant 10 minutes.

Lorsque l'agitation cesse, la cuve ayant fini son cycle de préparation peut passer en production ; à ce moment la vanne d'isolement de la cuve prête (Ev3 ou Ev4) s'ouvre et l'autre cuve peut commencer un cycle de préparation.

Q1- Compléter sur le document réponse 4 les séquences gestion de production de la pâte GT1, GT2, GT3 et GT4.

Gestion des sécurités

En cas d'anomalie de fonctionnement sur la chaîne de production, un opérateur appuie sur un bouton d'arrêt d'urgence "Aur".

L'appui sur "Aur" provoque l'arrêt du GRAFCET GP (préparation de la pâte) et l'initialisation des séquences de production et de préparation (GT1, GT2, GT3 et GT4). Le déverrouillage du bouton d'arrêt d'urgence provoque l'initialisation du GRAFCET GP.

Q2- Établir le GRAFCET de gestion d'arrêt d'urgence GUR.

BTS CONTROLE INDUSTRIEL ET REGULATION AUTOMATIQUE		Session 2018	
	Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 4/24

Gestion de la mesure de niveau

La mesure de niveau dans la cuve d'adjuvant RS-1 s'effectue par un transmetteur à ultrason relié à une entrée signal 4-20 mA de l'automate.

L'échelle du transmetteur a été réglée entre 0 cm et 100 cm.

La variable associée LT1 est codée en binaire naturel non signé sur 8 bits comme l'indique le tableau suivant :

Niveau [cm]	Signal transmetteur [mA]	Valeur automate (binaire)
0	4	0000 0000
10		5)
50		\$C^
100	20	1111 1111

Q3- Donner la valeur (en cm) de la plus petite variation de niveau détectable par l'automate.

Base Mationale des suiets different de l'enseidle des suiets de l'enseidle des suiets different de l'enseidle des suiets de l'enseidle de l'enseidle des suiets de l'enseidle des suiets de l'enseidle de l'enseidle de l'enseidle de l'enseidle de l'enseidle des suiets de l'enseidle de l

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE		Session 2018
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 5/24

Concentration de la pâte

ANNEXES 1, 2, 3, 4 et DOCUMENT RÉPONSE1 (CUVE 3)

Q5- Analyser le fonctionnement afin de déterminer le sens d'action du régulateur de concentration.

La vanne V1 est FPMA.

Le relevé de l'essai en boucle ouverte est disponible, il sera possible de l'analyser sur le document réponse 1 à rendre avec la copie.

Q6- Déterminer les valeurs de réglage du régulateur PI.

En analysant la réponse en boucle ouverte, le choix de régulateur PI permet-il d'obtenir une réponse satisfaisante en boucle fermée ?

Analyse de la régulation de niveau de la cuve 3

ANNEXES 1, 2, 5, 6 et DOCUMENT RÉPONSE 2

Une boucle simple de régulation de niveau a été installée.

Q7- En analysant l'enregistrement donné en ANNEXE 5 (donnant l'influence des variations du débit Qe sur la mesure du niveau), proposer en argumentant une modification de la stratégie de régulation.

Réaliser un schéma TI sur le document réponse 2.

On pourra utiliser l'ANNEXE 6 pour choisir un appareil nécessaire. (On préfèrera les appareils alimentés en 24 V à raccorder par brides).

Justifier le(s) sens d'action(s) du ou des régulateurs choisis.

Régulation de pression caisse de tête

ANNEXES 1, 2, 7 et DOCUMENT RÉPONSE 3

On a à notre disposition en atelier trois ensembles vannes avec positionneurs de régulation GX FISCHER DVC 2000 commandés par un signal 4-20 mA, 2 vannes NF(normalement fermée) et une NO(normalement ouverte).

Q8- Proposer une stratégie, ainsi que tout ce qui sera utile à sa mise en œuvre, pour réguler la pression de l'air au-dessus de la pâte dans la caisse de tête. On précise que pour une sortie du régulateur Yr de 50% la ou les vannes sont fermées. On prendra en compte l'aspect sécurité pour le choix des vannes.

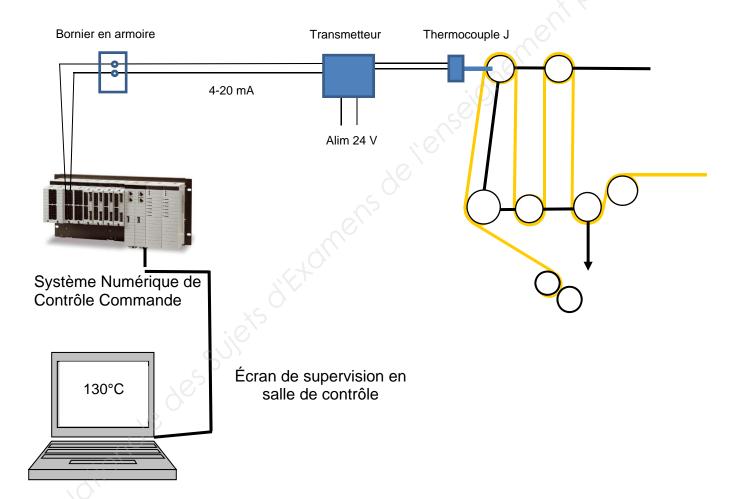
Il sera possible de réaliser sur le document réponse 3 :

- -un schéma TI avec positionnement des vannes, qui prend en compte l'aspect sécurité pour le choix des vannes ;
- -un diagramme de partage des deux vannes ;

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE		Session 2018
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 6/24

CA52AII

- -un schéma de programmation type SNCC du partage en utilisant les blocs fournis en ANNEXE 7 à faire sur la copie :
- -un schéma de câblage électrique régulateur /positionneur.


Mesure de température au niveau de la sècherie

ANNEXES 8 et 9

Afin d'optimiser la production, on analyse régulièrement les profils de températures au niveau des rouleaux de la sècherie.

Pour cela une chaîne de mesure de température est mise en place :

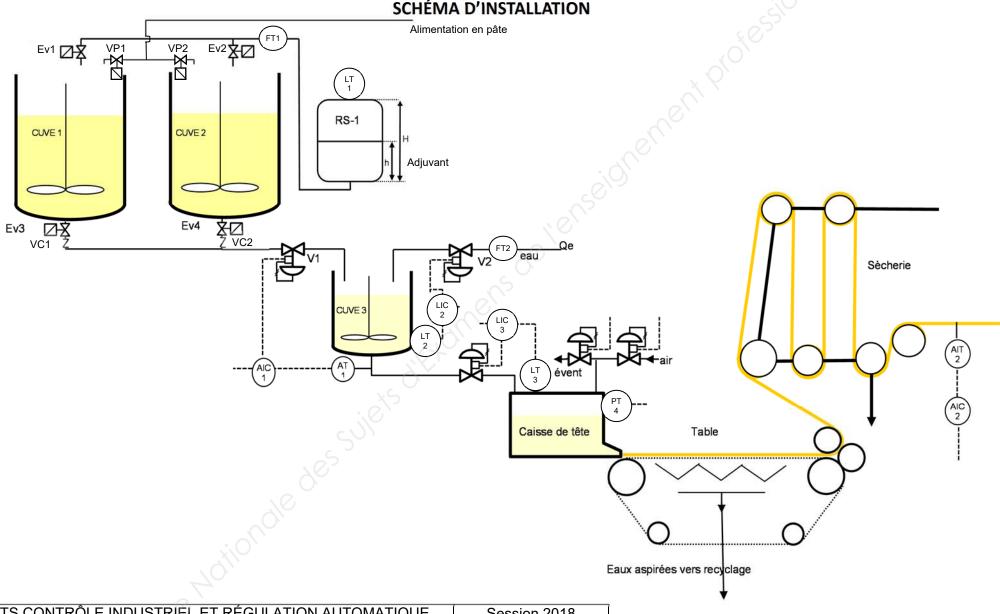
On dispose d'un transmetteur (étalonné entre 0 et 100°C) actif relié à un thermocouple type J.

Le transmetteur utilisé ne dispose pas de la compensation de soudure froide, il a été étalonné pour une température ambiante de 20 °C.

Q9- Proposer une méthode d'étalonnage du transmetteur (ainsi que les calculs éventuels).

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE		Session 2018
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 7/24

CA52AII


Q10- L'affichage sur l'écran de la supervision est le suivant : 130°C. Or il est impossible physiquement que la température atteigne cette valeur !

Ayant à votre disposition le matériel présenté dans l'ANNEXE 9, proposer une démarche structurée en précisant les hypothèses faites, pour déterminer la raison de ce problème d'affichage.

Aront aux de le source de source de le le reseignement profession de le source de le renseignement profession de le source de le renseignement profession de le source de la company de le source de la company de l On pourra s'appuyer sur des schémas de câblage électrique qui correspondront aux

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE		Session 2018
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 8/24

ANNEXE 1 SCHÉMA D'INSTALLATION

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE		Session 2018
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 9/24

ANNEXE 2 NOMENCLATURE/TABLE DES VARIABLES

Entrées

Désignation	Туре	Fonction
N1H	TOR	Niveau haut CUVE-1 à l'état logique 1 en présence de produit
N1B	TOR	Niveau bas CUVE-1 à l'état logique 0 en présence de produit
N2H	TOR	Niveau haut CUVE-2 à l'état logique 1 en présence de produit
N2B	TOR	Niveau bas CUVE-2 à l'état logique 0 en présence de produit
Aur	TOR	Bouton d'arrêt d'urgence verrouillable de type NF
LT1	Réel	Image du niveau cuve adjuvant RS-1, en échelle physique,
		variant de 0 à 100.
MA	TOR	Commutateur de commande de« marche/arrêt » du cycle
		MA=1 démarrage du cycle
		MA=0 arrêt du cycle
FT1	TOR	Entrée comptage du débitmètre
VAL_FT1	Réel	Nombre d'impulsions comptées

Sorties

Désignation	Туре	Fonction
VP1	TOR	Vanne d'alimentation de la cuve 1, de type NF
VP2	TOR	Vanne d'alimentation de la cuve 2, de type NF
Ev3	TOR	Vanne d'isolement de la cuve 1, de type NF
Ev4	TOR	Vanne d'isolement de la cuve 2, de type NF
Ev1	TOR	Vanne d'injection d'adjuvant de la cuve 1, de type NF
Ev2	TOR	Vanne d'injection d'adjuvant de la cuve 2, de type NF
Z1	TOR	Agitateur cuve 1, commande à l'état logique 1
Z2	TOR	Agitateur cuve 2, commande à l'état logique 1

Bits et mots automate

Désignation	Туре	Fonction	
PRE	Booléen	Autorisation de lancement du cycle de préparation de la pâte	
VAL_ADJ	Réel	Consigne du volume d'adjuvant en Litre	

_	l .	
Vannes de rég		
Désignation	Type	Fonction
V1	FPMA	Alimentation en pâte de la cuve 3
V2	FPMA	Alimentation en eau de la cuve 3
Vevent)	à analyser
Vair		à analyser

Appareils de mesure utiles

Désignation	Туре	Fonction
LT2	4-20 mA	Mesure du niveau dans la cuve 3
FT2	4-20 mA	Mesure du débit d'eau Qe
PT4	4-20 mA	Mesure de la pression dans la caisse de tête (0-3 bar)

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION	Session 2018	
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 10/24

ANNEXE 3 CAPTEUR DE DÉBIT FT1

CAPTEUR DE DEBIT SERIE ROUES OVALES

- Pour fluides visqueux de 5 à 8000 Centistokes
- Faible perte de charge
- Bonne précision ± 1%
- Raccord G 1/4" femelle
- 10 bar maxi

GENERALITES - PRINCIPE

Ces capteurs de débit de très bonne précision dans la plage d'utilisation, sont à utiliser pour le dosage et la mesure de débit des fluides visqueux tel que : sirop, huile, détergent plus ou moins concentré.

L'instrument se compose de deux roues à engrenage entraînées par le fluide. Chaque rotation correspond à une quantité précise de liquide. Chaque roue équipée d'un aimant noyé, délivre au travers d'un capteur à effet hall, des impulsions dont le nombre est proportionnel au débit.

CARACTERISTIQUES TECHNIQUES

Plage de débit : 0.06-16.0 l/min (dépendant de la viscosité)

Précision de mesure : ± 1% (dépendant de la viscosité)

Reproductibilité : <± 0.25 %
Température d'utilisation : -10...+65 °C
Pression maxi : 10 bar à 20 °C

Position de montage \(\) Horizontale (recommandée)

Ø de passage : 7 mm

Viscosité : 5...8000 Centistokes

Tension d'alimentation : 4.5...24 V DC (12 V DC recommandée)

Consommation : 8 mA à 25 mA maxi
Type de signal : Collecteur ouvert NPN

Voltage du signal : 0 V GND Charge du signal : 5 mA maxi Courant de fuite : 10 µ/A maxi

Connexions : 3-pin AMP 2.8 x 0.8 mm Signal : Sortie signal carré

Cycle de service : 50% /± 3%

Boltier : PEEK 150 GL 30
Axes : Inox 1.4435
0-ring : FPM

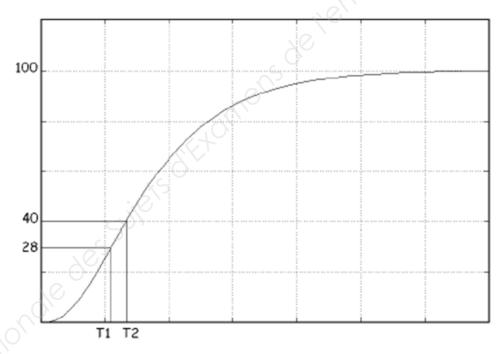
EPDM (S/DDE)

Turbine : PEEK

Airmants : NdFeB (Neodym) (sans contact avec le produit)

CODE ET CARACTERISTIQUES

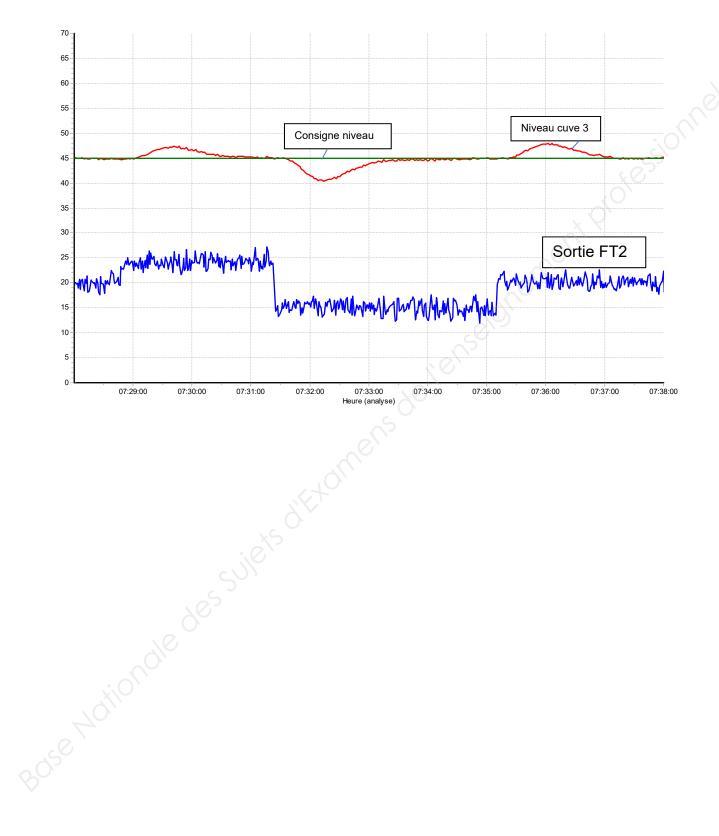
Code	Réference	Ø de passage	Impulsions /litre	g /impulsion	Débit mini litres/mn départ linéaire	Débit maxi litres /mn	Perte de charge
782 505	OV 16	7,00 mm	462	2,166	0,0653	5,35	0,29 bar


BTS CONTRÖLE INDUSTRIEL ET RÉGULAT	Session 2018	
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 11/24

ANNEXE 4 Méthode de BROÏDA

Tableau des réglages de Broïda d'un régulateur PI parallèle

	PI //	PID//
BP en %	$\frac{125 \times K \times T}{\tau}$	$\frac{120 \times K \times T(\tau + 0.4T)}{\tau}$
Ti en s	1.25×K× τ	$\frac{1.3 \times K}{T}$
Td en s		$\frac{0.35 \times \tau}{K}$


Méthode d'identification de Broïda

$$K = \frac{\Delta M}{\Delta Yr}$$
 $\tau = 5.2(t2 - t1)$ $T = 2.8t1 - 1.8t2$

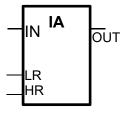
BTS CONTROLE INDUSTRIEL ET REGULATION	Session 2018	
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 12/24

ANNEXE 5 ÉVOLUTION DU NIVEAU DE LA CUVE 3 ET DU DÉBIT D'EAU

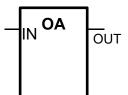
BTS CONTRÔLE INDUSTRIEL ET RÉGULATI	Session 2018	
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 13/24

ANNEXE 6 Transmetteurs de débit PROMAG 10D (ENDRESS HAUSER)

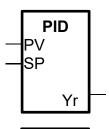
Valeurs de débit

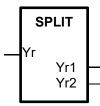

Diamètre nominal		Débit recommandé	Réglages usine	Réglages usine		
[mm]	[inches]	Fin d'échelle min./max. (v ~ 0,3 ou 10 m/s)	Fin d'échelle sortie courant (v ~ 2,5 m/s)	Valeur impulsion (~ 2 impulsions/s)	Débit de fuite (v ~ 0,04 m/s)	
25	1"	9300 dm ³ /min	75 dm³/min	0,50 dm³	1 dm³/min	
40	1 1/2"	25700 dm³/min	200 dm³/min	1,50 dm³	3 dm³/min	
50	2"	351100 dm³/min	300 dm³/min	2,50 dm³	5 dm³/min	
65	-	602000 dm³/min	500 dm³/min	5,00 dm³	8 dm³/min	
80	3"	903000 dm³/min	750 dm³/min	5,00 dm³	12 dm³/min	
100	4"	1454700 dm³/min	1200 dm³/min	10,00 dm³	20 dm³/min	

Débitmètre électromagnétique Promag 10D (Montage entre brides)			Réf. article
Revêtement	Alimentation ; affichage	Diamètre	· () **
Polyamide, KTW/W270	85-250 V AC ; 2-ligne,	DN25	10D25-CGA1AA0A4AA+M1
certifié pr le contact av.	boutons-poussoirs	DN40	10D40-CGA1AA0A4AA+M1
l'eau potable		DN50	10D50-CGA1AA0A4AA+M1
		DN65	10D65-CGA1AA0A4AA+M1
		DN80	10D80-CGA1AA0A4AA+M1
		DN100	10D1H-CGA1AA0A4AA+M1
	20-28 V AC / 11-40 V DC ; 2-ligne, boutons-poussoirs	DN25	10D25-CGA1AA0A5AA+M1
		DN40	10D40-CGA1AA0A5AA+M1
		DN50	10D50-CGA1AA0A5AA+M1
		DN65	10D65-CGA1AA0A5AA+M1
		DN80	10D80-CGA1AA0A5AA+M1
		DN100	10D1H-CGA1AA0A5AA+M1

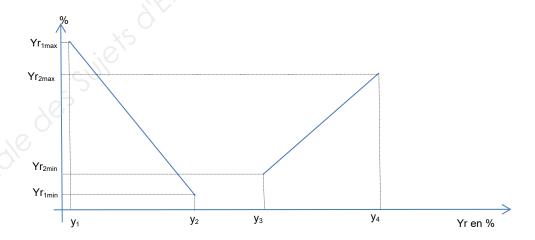

Débitmètre électromagné	Réf. article		
Revêtement	Alimentation ; affichage	Diamètre	
Polyamide, KTW/W270	85-250 V AC ; 2-ligne,	DN25	10D25UGA1AA0A4AA
certifié pr le contact av.	boutons-poussoirs	DN40	10D40UGA1AA0A4AA
l'eau potable		DN50	10D50UGA1AA0A4AA
	20-28 V AC /	DN25	10D25-UGA1AA0A5AA
	11-40 V DC ; 2-ligne,	DN40	10D40-UGA1AA0A5AA
	boutons-poussoirs	DN50	10D50-UGA1AA0A5AA

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION	Session 2018	
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 14/24


Annexe 7 Blocs de programmation disponibles


Bloc entrée analogique. Entrée 4-20 mA Sortie 0-100% (Valeurs à paramétrer, Bas Échelle, Haut Échelle)

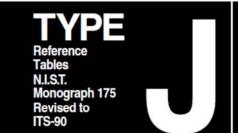
OUT Bloc sortie analogique Entrée 0-100% Sortie 4-20mA

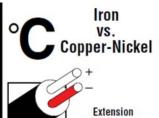


Bloc régulateur PID. Entrée mesure (PV) en % Entrée Consigne (SP) en %, Sortie (Yr) 0-100%

Bloc Split range : La fonction split-range permet de piloter deux vannes de régulations avec une seule grandeur réglante. A partir de la valeur réglante Yr servant de signal d'entrée, la fonction split-range génère les deux signaux de sortie : valeur réglante Yr1 et valeur réglanteYr2

Valeur à programmer (Yr_{1min}, Yr_{1max}, Yr_{2min}, Yr_{2max}, y₁, y₂, y₃, y₄)




BTS CONTRÔLE INDUSTRIEL ET RÉGULATION	Session 2018	
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 15/24

ANNEXE 8: Thermocouples

Revised Thermocouple Reference Tables

Grade

MAXIMUM TEMPERATURE RANGE Thermocouple Grade: 32 to 1382°F 0 to 75 Extension Grade: 32 to 392°F 0 to 200°C

LIMITS OF ERROR (whichever is greater) Standard: 2.2°C or 0.75% Special: 1.1°C or 0.4% COMMENTS, BARE WIRE ENVIRONMENT
Reducing, Vacuum, Inert; Limited Use in
Oxidizing at High Temperatures;
Not Recommended for Low Temperatures
TEMPERATURE IN DEGREES °C
REFERENCE JUNCTION AT 0°C

Thermoelectric Voltage in Millivolts

°C -200	-10 -8.095	-9 -8.076	-8 -8.057		-6 -8.017	-5 -7.996	-4 -7.976	-3 -7.955	-2 -7,934	-1 -7.912	0 -7.890	°C -200	°C	0	1	2	3	4	5	6	7	8	9	10	°C
-190 -180 -170 -160 -150	-7.890 -7.659 -7.403 -7.123 -6.821	-7.868 -7.634 -7.376 -7.094 -6.790	-7.610	-7.585	-7.559 -7.293 -7.005	-7,778 -7,534 -7,265 -6,975 -6,663	-7.508 -7.237 -6.944	-7.482 -7.209	-7.456 -7.181	-7.683 -7.429 -7.152 -6.853 -6.533	-7.403 -7.123 -6.821	-190 -180 -170 -160 -150	500 510 520 530 540	28.516 29.080	28.572 29.137	27.505 28.066 28.629 29.194 29.761	28.685	28.741 29.307	28.798 29.363	28,854	28.911	28.967 29.534	29.024	29.080	500 510 520 530 540
-140 -130 -120 -110 -100	-6.500 -6.159 -5.801 -5.426 -5.037	-6.467 -6.124 -5.764 -5.388 -4.997	-6.433 -6.089 -5.727 -5.350 -4.957	-6.400 -6.054 -5.690 -5.311 -4.917	-6.366 -6.018 -5.653 -5.272 -4.877	-6.332 -5.982 -5.616 -5.233 -4.836	-6.298 -5.946 -5.578 -5.194 -4.796	-6.263 -5.910 -5.541 -5.155 -4.755	-6.229 -5.874 -5.503 -5.116 -4.714	-6.194 -5.838 -5.465 -5.076 -4.674	-5.801 -5.426	-140 -130 -120 -110 -100	550 560 570 580 590	30.216 30.788 31.362 31.939 32.519	31 419	30.330 30.902 31.477 32.055 32.636	31 535	31 592	31.650	31 708	31 766	31 823	31 981	31 939	550 560 570 580 590
-90 -80 -70 -60 -50	-4.633 -4.215 -3.786 -3.344 -2.893	-4.591 -4.173 -3.742 -3.300 -2.847	-4.550 -4.130 -3.698 -3.255 -2.801	-4.509 -4.088 -3.654 -3.210 -2.755	-4.467 -4.045 -3.610 -3.165 -2.709	-4.425 -4.002 -3.566 -3.120 -2.663	-4.384 -3.959 -3.522 -3.075 -2.617	-4.342 -3.916 -3.478 -3.029 -2.571	-4.300 -3.872 -3.434 -2.984 -2.524	-4.257 -3.829 -3.389 -2.938 -2.478	-4.215 -3.786 -3.344 -2.893 -2.431	-90 -80 -70 -60 -50	600 610 620 630 640		33.161 33.748 34.338 34.932 35.530	33.219 33.807 34.397 34.992 35.590	34.457	34,516	34.575	33.454 34.043 34.635 35.230 35.830	34.694	34.754	34.813	35.470	600 610 620 630 640
-40 -30 -20 -10 0	-2.431 -1.961 -1.482 -0.995 -0.501	-0.946	-2.338 -1.865 -1.385 -0.896 -0.401	-2.291 -1.818 -1.336 -0.847 -0.351	-1.770 -1.288 -0.798	-2.197 -1.722 -1.239 -0.749 -0.251	-1.190 -0.699	-0.650	-2.055 -1.578 -1.093 -0.600 -0.101	-2.008 -1.530 -1.044 -0.550 -0.050	-1.961 -1.482 -0.995 -0.501 0.000	-40 -30 -20 -10 0	650 660 670 680 690	36.071 36.675 37.284 37.896 38.512	36.131 36.736 37.345 37.958 38.574	36.191 36.797 37.406 38.019 38.636	36.252 36.858 37.467 38.081 38.698	36.312 36.918 37.528 38.142 38.760	36.373 36.979 37.590 38.204 38.822	36.433 37.040 37.651 38.265 38.884	36.494 37.101 37.712 38.327 38.946	36.554 37.162 37.773 38.389 39.008	36.615 37.223 37.835 38.450 39.070	36.675 37.284 37.896 38.512 39.132	650 660 670 680 690
0 10 20 30 40	0.000 0.507 1.019 1.537 2.059	0.050 0.558 1.071 1.589 2.111	0.101 0.609 1.122 1.641 2.164	0.151 0.660 1.174 1.693 2.216	0.202 0.711 1.226 1.745 2.269	0.253 0.762 1.277 1.797 2.322	0.303 0.814 1.329 1.849 2.374	0.354 0.865 1.381 1.902 2.427	0.405 0.916 1.433 1.954 2.480	0.456 0.968 1.485 2.006 2.532	0.507 1.019 1.537 2.059 2.585	10 20 30 40	700 710 720 730 740	39,132 39,755 40,382 41,012 41,645	39.194 39.818 40.445 41.075 41.708	39.256 39.880 40.508 41.138 41.772	39.318 39.943 40.570 41.201 41.835	39.381 40.005 40.633 41.265 41.899	39.443 40.068 40.696 41.328 41.962	39.505 40.131 40.759 41.391 42.026	39.568 40.193 40.822 41.455 42.090	39.630 40.256 40.886 41.518 42.153	39.693 40.319 40.949 41.581 42.217	39.755 40.382 41.012 41.645 42.281	700 710 720 730 740
50 60 70 80 90	2.585 3.116 3.650 4.187 4.726	2.638 3.169 3.703 4.240 4.781	2.691 3.222 3.757 4.294 4.835	2.744 3.275 3.810 4.348 4.889	2.797 3.329 3.864 4.402 4.943	2.850 3.382 3.918 4.456 4.997	2.903 3.436 3.971 4.510 5.052	2.956 3.489 4.025 4.564 5.106	3.009 3.543 4.079 4.618 5.160	3.062 3.596 4.133 4.672 5.215	3.116 3.650 4.187 4.726 5.269	50 60 70 80 90	750 760 770 780 790	42.281 42.919 43.559 44.203 44.848	42.344 42.983 43.624 44.267 44.913	42.408 43.047 43.688 44.332 44.977	42.472 43.111 43.752 44.396 45.042	42.536 43.175 43.817 44.461 45.107	42.599 43.239 43.881 44.525 45.171	42.663 43.303 43.945 44.590 45.236	42.727 43.367 44.010 44.655 45.301	42.791 43.431 44.074 44.719 45.365	42.855 43.495 44.139 44.784 45.430	42.919 43.559 44.203 44.848 45.494	750 760 770 780 790
100 110 120 130 140	5.269 5.814 6.360 6.909 7.459	5.323 5.868 6.415 6.964 7.514	5.378 5.923 6.470 7.019 7.569	5.432 5.977 6.525 7.074 7.624	5.487 6.032 6.579 7.129 7.679	5.541 6.087 6.634 7.184 7.734	5.595 6.141 6.689 7.239 7.789	5.650 6.196 6.744 7.294 7.844	5.705 6.251 6.799 7.349 7.900	5.759 6.306 6.854 7.404 7.955	7.459	100 110 120 130 140	800 810 820 830 840	46.786 47.431	46.205 46.851 47.495	45.624 46.270 46.915 47.560 48.202	46.334 46.980 47.624	46.399 47,044 47,688	46.464 47.109 47.753	46.528 47.173 47.817	46.593 47.238 47.881	46.657 47.302 47.946	46.722 47.367 48.010	46.786 47.431 48.074	800 810 820 830 840
150 160 170 180 190	8.010 8.562 9.115 9.669 10.224	8.065 8.618 9.171 9.725 10.279	8.120 8.673 9.226 9.780 10.335	8.175 8.728 9.282 9.836 10.390	8.231 8.783 9.337 9.891 10.446	8.286 8.839 9.392 9.947 10.501	8.341 8.894 9.448 10.002 10.557	8.396 8.949 9.503 10.057 10.612	8.452 9.005 9.559 10.113 10.668	8.507 9.060 9.614 10.168 10.723	8.562 9.115 9.669 10.224 10.779	150 160 170 180 190	850 860 870 880 890	50.622	50.685	48.843 49.481 50.116 50.748 51.377	50.811	50.874	50.937	51.000	51.063	51.126	51.188	51.251	850 860 870 880 890
200 210 220 230 240	10.779 11.334 11.889 12.445 13.000	10.834 11.389 11.945 12.500 13.056	12.000 12.556	10.945 11.501 12.056 12.611 13.167	12.111	11.056 11.612 12.167 12.722 13.278	12.222	11.167 11.723 12.278 12.833 13.389	12.334	11.278 11.834 12.389 12.944 13.500	11 RR9	200 210 220 230 240	900 910 920 930 940	53,119	53.181 53.796	52.002 52.624 53.243 53.857 54.469	53.304	53,366	53.427	53.489	53,550	53.612	53.673	53,735	900 910 920 930 940
250 260 270 280 290	14.110 14.665 15.219	14.166 14.720 15.275	15.330	14.277 14.831 15.386	14.332 14.887 15.441	13.833 14.388 14.942 15.496 16.050	14.443 14.998 15.552	15.607	14.554 15.109 15.663	14.609	14.665 15.219	250 260 270 280 290	950 960 970 980 990	54,956 55,561 56,164 56,763 57,360	56.224	55.682 56.284 56.883	55.742 56.344 56.942	55.803 56.404 57.002	55.863 56.464 57.062	56.524	55.983 56.584 57.181	56.043 56.643 57.240	56.104 56.703 57.300	56.164 56.763 57.360	950 960 970 980 990
300 310 320 330 340	17.434 17.986	17.489	18,097	17.599 18.152	17.102 17.655 18.207	17,710	17.212 17.765 18.318	17.820	17.876 18.428	17,931	17.434 17.986	300 310 320 330 340	1000 1010 1020 1030 1040	57.953 58.545 59.134 59.721 60.307	58.013 58.604 59.193 59.780 60.365	58.072 58.663 59.252 59.838 60.423	58.722 59.310 59.897	58.781 59.369 59.956	58.840 59.428 60.014	58.309 58.899 59.487 60.073 60.657	58.957 59.545 60.131	60.190	59.075 59.663 60.248	59.134 59.721 60.307	1000 1010 1020 1030 1040
350 360 370 380 390	19.090 19.642 20.194 20.745 21.297	19.697 20.249 20.800	19.201 19.753 20.304 20.855 21.407	19.256 19.808 20.359 20.911 21.462	19.863 20.414 20.966	19.366 19.918 20.469 21.021 21.572	19.973 20.525 21.076	20.028 20.580 21.131	20.083 20.635 21.186	19.587 20.139 20.690 21.241 21.793	19.642 20.194 20.745 21.297 21.848	350 360 370 380 390	1050 1060 1070 1080 1090	60.890 61.473 62.054 62.634 63.214	60.949 61.531 62.112 62.692 63.271	61.007 61.589 62.170 62.750 63.329	61.647 62.228 62.808	61.705 62.286 62.866	61.763 62.344 62.924	61.240 61.822 62.402 62.982 63.561	61.880 62.460 63.040	61.356 61.938 62.518 63.098 63.677	61.996 62.576 63.156	62.054 62.634 63.214	1050 1060 1070 1080 1090
400 410 420 430 440	21.848 22.400 22.952 23.504 24.057	21.903 22.455 23.007 23.559 24.112	21.958 22.510 23.062 23.614 24.167	22.014 22.565 23.117 23.670 24.223	22.069 22.620 23.172 23.725 24.278	22.124 22.676 23.228 23.780 24.333	22.179 22.731 23.283 23.835 24.389	22.234 22.786 23.338 23.891 24.444	22.289 22.841 23.393 23.946 24.499	22.345 22.896 23.449 24.001 24.555	22,400 22,952 23,504 24,057 24,610	400 410 420 430 440	1100 1110 1120 1130 1140	63.792 64.370 64.948 65.525 66.102	63,850 64,428 65,006 65,583 66,160	63.908 64.486 65.064 65.641 66.218	65.699	64.602 65.179 65.756	64.659 65.237 65.814	64,139 64,717 65,295 65,872 66,448	64.775 65.352 65.929	64.833 65.410	64.890 65.468 66.045	64.948 65.525 66.102	1100 1110 1120 1130 1140
450 460 470 480 490	24.610 25.164 25.720 26.276 26.834	24.665 25.220 25.775 26.332 26.889			25.386 25.942 26.499 27.057	24.887 25.442 25.998 26.555 27.113	24.943 25.497 26.053 26.610 27.169	24.998 25.553 26.109 26.666 27.225	25.053 25.608 26.165 26.722 27.281			450 460 470 480 490	1150 1160 1170 1180 1190	68,406 68,980	68,463 69,037		67.428 68.003 68.578 69.152	67.486 68.061 68.636 69.209	67,543 68,119 68,693 69,267	68.751 69.324	67.658 68.234 68.808 69.381	67.716 68.291 68.865 69.439	67.773 68.348 68.923 69.496	67.831 68.406 68.980 69.553	1150 1160 1170 1180 1190
°C	0	1	2	3	4	5	6	7	8	9	10	°C	O.C	0	1	2	3	4	5	6	7	8	9	10	°C

BTS CONTRÔLE INDUSTRIEL ET RÉGULATI	Session 2018	
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 16/24

MAXIMUM TEMPERATURE RANGE

Thermocouple Grade - 328 to 1652°F - 200 to 900°C

Extension Grade 32 to 392°F 0 to 200°C

LIMITS OF ERROR

Charles of ERROR (whichever is greater) Standard: 1.7°C or 0.5% Above 0°C 1.7°C or 1.0% Below 0°C Special: 1.0°C or 0.4%

COMMENTS, BARE WIRE ENVIRONMENT: Oxidizing or Inert; Limited Use in Vacuum or Reducing; Highest EMF Change per Degree

TEMPERATURE IN DEGREES °C REFERENCE JUNCTION AT 0°C

Nickel-Chromium Copper-Nickel

Revised Thermocouple Reference Tables

color code EC color code Reference **Tables** N.I.S.T. ANSI Monograph 175 Revised to ITS-90

Thermoelectric Voltage in Millivolts 90 1 90

°C	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	°C	°C 350	24.964	1 25.044	2 25.123	3 25.202	4 25.281	5 25,360	6 25,440 26,233	7 25.519	25,598	9 25.678	10 25.757	°C 350
260 250	-9.835 -9.797	-9.833 -9.790	-9.831 -9.784	-9.828 -9.777	-9.825 -9.770	-9.821 -9.762	-9.817 -9.754	-9.813 -9.746	-9.808 -9.737	-9.802 -9.728	-9.797 -9.718	-260 -250	360 370 380 390	26.552 27.348	26.631 27.428	26.711 27.507	26.790 27.587	26.870 27.667	26.950 27.747	26.233 27.029 27.827 28.626	27.109 27.907	27.189 27.986	26.472 27.268 28.066 28.866	26.552 27.348 28.146 28.946	360 370 380 390
240 230 220 210 200	-9.718 -9.604 -9.455 -9.274 -9.063	-9.709 -9.591 -9.438 -9.254 -9.040	-9.698 -9.577 -9.421 -9.234 -9.017		-9.677 -9.548 -9.386 -9.193 -8.971	-9.666 -9.534 -9.368 -9.172 -8.947	-9.654 -9.519 -9.350 -9.151 -8.923	-9.642 -9.503 -9.331 -9.129 -8.899	-9.630 -9.487 -9.313 -9.107 -8.874	-9.617 -9.471 -9.293 -9.085 -8.850	-9.604 -9.455 -9.274 -9.063 -8.825	-240 -230 -220 -210 -200	400 410 420 430 440	28.946 29.747 30.550 31.354 32.159	29.026 29.827 30.630 31.434 32.239	29.106 29.908 30.711 31.515 32.320	29.186 29.988 30.791 31.595 32.400	29.266 30.068 30.871 31.676 32.481	30.952	31.032	29.507 30.309 31.112 31.917 32.723	29.587 30.389 31.193 31.998 32.803	29.667 30.470 31.273 32.078 32.884		400 410 420 430 440
190 180 170 160 150	-8.825 -8.561 -8.273 -7.963 -7.632	-8.799 -8.533 -8.243 -7.931 -7.597	-8.213 -7.899	-8.183 -7.866	-8.722 -8.449 -8.152 -7.833 -7.493	-7.800	-8.090 -7.767	-8.059	-7.700	-8.588 -8.303 -7.995 -7.666 -7.315	-8.561 -8.273 -7.963 -7.632 -7.279	-190 -180 -170 -160 -150	450 460 470 480 490	32.965 33.772 34.579 35.387 36.196	34,660	34.741	34.822	34.902	34.983	33.449 34.256 35.064 35.873 36.682	35.145 35.954	35,226	33.691 34.498 35.307 36.115 36.924	34.579 35.387 36.196	450 460 470 480 490
140 130 120 110 100	-7.279 -6.907 -6.516 -6.107 -5.681	-7.243 -6.869 -6.476 -6.065 -5.637	-6.436	-7.170 -6.792 -6.396 -5.981 -5.549	-6.753 -6.355 -5.939	-7.096 -6.714 -6.314 -5.896 -5.461	-7.058 -6.675 -6.273 -5.853 -5.417	-7.021 -6.636 -6.232 -5.810 -5.372	-6.983 -6.596 -6.191 -5.767 -5.327	-6.945 -6.556 -6.149 -5.724 -5.282	-6.907 -6.516 -6.107 -5.681 -5.237	-140 -130 -120 -110 -100	500 510 520 530 540	37.005 37.815 38.624 39.434 40.243	38.705 39.515	38.786 39.596	38.867	38.948 39.758	39.029 39.839	37.491 38.300 39.110 39.920 40.729	39.191	38.462 39.272 40.082	37.734 38.543 39.353 40.163 40.972	38.624 39.434 40.243	500 510 520 530 540
-90 -80 -70 -60 -50	-5.237 -4.777 -4.302 -3.811 -3.306	-5.192 -4.731 -4.254 -3.761 -3.255	-5.147 -4.684 -4.205 -3.711 -3.204	-5.101 -4.636 -4.156 -3.661 -3.152	-5.055 -4.589 -4.107 -3.611 -3.100	-4.542 -4.058 -3.561	-4.963 -4.494 -4.009 -3.510 -2.996	-4.917 -4.446 -3.960 -3.459 -2.944	-4.871 -4.398 -3.911 -3.408 -2.892	-4.824 -4.350 -3.861 -3.357 -2.840		-90 -80 -70 -60 -50	550 560 570 580 590	41.862 42.671 43.479	41.943 42.751 43.560	42.024 42.832 43.640	42.105 42.913 43.721	42.185 42.994 43.802	42.266 43.075 43.883	41.538 42.347 43.156 43.963 44.771	42.428 43.236 44.044	42.509 43.317 44.125	41.781 42.590 43.398 44.206 45.013	42.671 43.479 44.286	550 560 570 580 590
-40 -30 -20 -10 0	-2.787 -2.255 -1.709 -1.152 -0.582	-2.735 -2.201 -1.654 -1.095 -0.524	-2.682 -2.147 -1.599 -1.039 -0.466	-2.629 -2.093 -1.543 -0.982 -0.408	-2.576 -2.038 -1.488 -0.925 -0.350	-2.523 -1.984 -1.432 -0.868 -0.292	-2.469 -1.929 -1.376 -0.811 -0.234	-2.416 -1.874 -1.320 -0.754 -0.176	-2.362 -1.820 -1.264 -0.697 -0.117	-1.208		-40 -30 -20 -10	600 610 620 630 640	46.705 47.509	46.785 47.590	46.866 47.670	46.946 47.751	47.027 47.831	47.107 47.911	45.577 46.383 47.188 47.992 48.795	47.268 48.072	47.349 48.152	47.429 48.233	47.509 48.313	600 610 620 630 640
0 10 20 30 40	0.000 0.591 1.192 1.801 2.420	0.059 0.651 1.252 1.862 2.482	0.118 0.711 1.313 1.924 2.545	0.176 0.770 1.373 1.986 2.607	0.235 0.830 1.434 2.047 2.670	0.294 0.890 1.495 2.109 2.733	0.354 0.950 1.556 2.171 2.795	0.413 1.010 1.617 2.233 2.858	0.472 1.071 1.678 2.295 2.921	0.532 1.131 1.740 2.357 2.984	0.591 1.192 1.801 2.420 3.048	0 10 20 30 40	650 660 670 680 690	49.917 50.718 51.517	49.997 50.798 51.597	50.077 50.878 51.677	50.157 50.958 51.757	50.238 51.038 51.837	50.318 51.118 51.916	49.597 50.398 51.197 51.996 52.794	50.478 51.277 52.076	50.558 51.357 52.156	50.638	50.718 51.517 52.315	650 660 670 680 690
50 60 70 80 90	3.048 3.685 4.330 4.985 5.648	3.111 3.749 4.395 5.051 5.714	3.174 3.813 4.460 5.117 5.781	3.238 3.877 4.526 5.183 5.848	3.301 3.942 4.591 5.249 5.915	3.365 4.006 4.656 5.315 5.982	3,429 4,071 4,722 5,382 6,049	3.492 4.136 4.788 5.448 6.117	3.556 4.200 4.853 5.514 6.184	3.620 4.265 4.919 5.581 6.251	3.685 4.330 4.985 5.648 6.319	50 60 70 80 90	700 710 720 730 740	53.112 53.908 54.703 55.497 56.289	53.988 54.782 55.576	54.067 54.862 55.655	54.147 54.941 55.734	54.226 55.021 55.814	54.306 55.100 55.893	53.590 54.385 55.179 55.972 56.764	54.465 55.259 56.051	54.544 55.338 56.131	54.624 55.417 56.210	54.703 55.497 56.289	700 710 720 730 740
100 110 120 130 140	6.319 6.998 7.685 8.379 9.081	6.386 7.066 7.754 8.449 9.151	6.454 7.135 7.823 8.519 9.222	6.522 7.203 7.892 8.589 9.292	6.590 7.272 7.962 8.659 9.363	6.658 7.341 8.031 8.729 9.434	6.725 7.409 8.101 8.799 9.505	6.794 7.478 8.170 8.869 9.576	6.862 7.547 8.240 8.940 9.647	6.930 7.616 8.309 9.010 9.718	6.998 7.685 8.379 9.081 9.789	100 110 120 130 140	750 760 770 780 790	57.080 57.870 58.659 59.446 60.232	57.949 58.738 59.525	58.028	58.107 58.895 59.682	58.186 58.974 59.761	58.265 59.053 59.839	57.554 58.343 59.131 59.918 60.704	58.422 59.210 59.997	58,501 59,289 60,075	58.580 59.367 60.154	58.659 59.446 60.232	750 760 770 780 790
150 160 170 180 190	9.789 10.503 11.224 11.951 12.684	9.860 10.575 11.297 12.024 12.757	9.931 10.647 11.369 12.097 12.831	10.719 11.442 12.170	10.791 11.514 12.243	10.863 11.587 12.317	11.660 12.390	11.007 11.733 12.463	11.805 12.537	11.878	10.503 11.224 11.951 12.684 13.421	150 160 170 180 190	800 810 820 830 840	61.017 61.801 62.583 63.364 64.144	61.096 61.879 62.662 63.442 64.222	61.958 62.740 63.520	62.036 62.818 63.598	62.114 62.896 63.676	62.192 62.974 63.754	61.488 62.271 63.052 63.832 64.611	62,349 63,130 63,910	62.427 63.208 63.988		62.583 63.364 64.144	800 810 820 830 840
200 210 220 230 240	13.421 14.164 14.912 15.664 16.420	14.239	14.313 15.062 15.815	14.388 15.137 15.890	13.718 14.463 15.212 15.966 16.724	14.537 15.287 16.041	14.612 15.362 16.117	14.687 15.438 16.193	14.762 15.513 16.269	16,344	15.664 16.420	200 210 220 230 240	850 860 870 880 890	64.922 65.698 66.473 67.246 68.017	66,550	65.853 66.628	65.931 66.705	66.008 66.782	66.086	65.388 66.163 66.937 67.709 68.479	66.241	66,318 67,092	65.621 66.396 67.169 67.940 68.710	68,017	850 860 870 880 890
250 260 270 280 290	17.181 17.945 18.713 19.484 20.259	18.021	17.333 18.098 18.867 19.639 20.414	18.175 18.944	18.252	18.328	18.405 19.175	18.482	18.559	18,636	18.713 19.484 20.259	250 260 270 280 290	900 910 920 930 940	70.319 71.082	69.631 70.396 71.159	69.707 70.472 71.235	69.784 70.548 71.311	69.860 70.625 71.387	69.937 70.701 71.463	69.247 70.013 70.777 71.539 72.299	70.090 70.854 71.615	70,166 70,930 71,692	70.243 71.006 71.768	70.319 71.082 71.844	900 910 920 930 940
300 310 320 330 340	22,600	21.895 22.678	22.757	22.051	22.130	22,208	22.286	22,365	22.443	22.522	23.386	300 310 320 330 340	950 960 970 980 990	73,360 74,115 74,869	73.435 74.190 74.944	73.511 74.266 75.019	73.586 74.341 75.095	73.662 74.417 75.170	73.738 74.492 75.245	73.057 73.813 74.567 75.320 76.072	73.889 74.643 75.395	73.964 74.718 75.471	74.793	74.115 74.869 75.621	950 960 970 980 990
°C	0	1	2	3	4	5	6	7	8	9	10	°C	°C	0	1	2	3	4	5	6	7	8	9	10	°C

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION	Session 2018	
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 17/24

ANNEXE 9 Matériels

Multimètre Numérique Portable

- Fonction de mesure : Résistance DC courant Tension
 Condensateurs Courant alternatif Tension de courant continu - Batteries.
- Design petit et compact & fonction rétroéclairage.
- Alimentation : Pile 9V (Non fournie).
- Emballage : 1 x Multimètre numérique (sans batterie) 2 x Sondes - 1 x Manuel de l'utilisateur en anglais

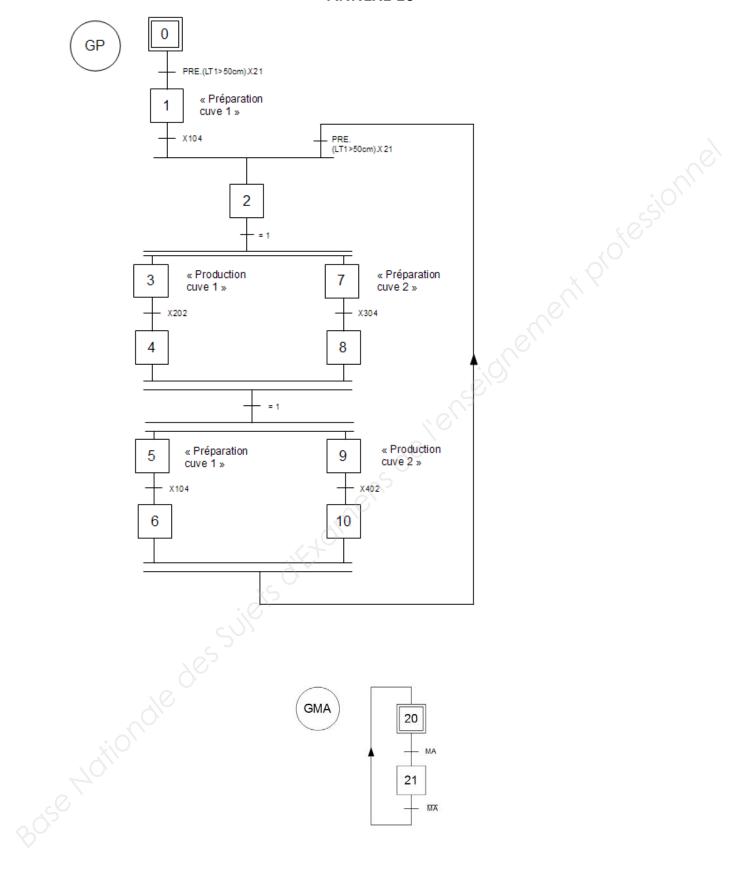
Calibrateur de Process Multifonctions

Fonctions supplémentaires	Affichage rétro-éclairé Mesures et émissions en simultané
	 Fonctions rampes et échelons Mémorisation de 50 mesures et simulations
Type d'affichage	Double affichage LCD
Gamme de tension max.	300 V
Gamme de courant max.	100 mA
Gamme de résistance max.	400 Ω
Gamme de température min.	-250 °C
Gamme de température max.	1 820 °C
Type de capteur	J/K/T/E/L/N/U/B/R/S Pt100
Source de tension max.	30 V
Source de courant max.	20 mA
Source de résistance max.	400 Ω
Source de température min.	-250 °C
Source de température max.	1 820 °C
Appareil portable	Oui
Conformité ATEX	Non
Mémoire / Enregistreur	50 mesures
Interfaces	Oui
Types d'interfaces	RS232
Alimentation	4 piles 1,5 V type LR06 ou secteur

Talkie-walkie professionnels

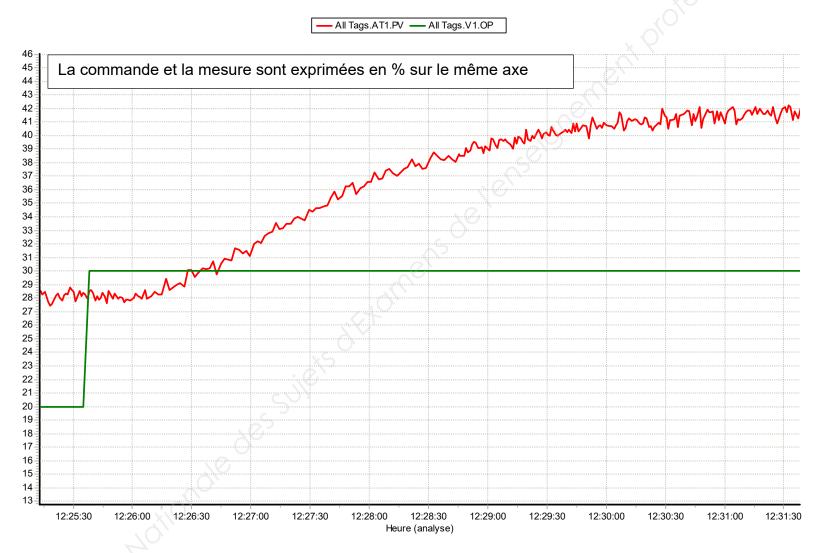
BTS CONTRÔLE INDUSTRIEL ET RÉGULAT	Session 2018	
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 18/24

Console de communication Hart

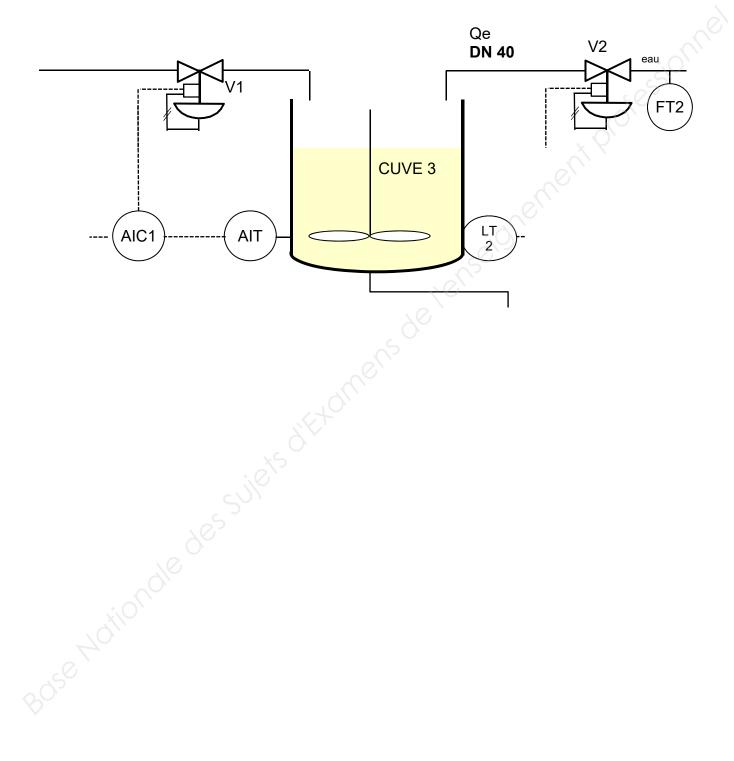


Four d'étalonnage et de calibration (0-150°C)

BTS CONTRÔLE INDUSTRIEL ET RÉGULAT	Session 2018	
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 19/24

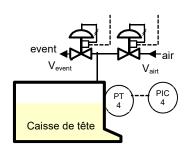

ANNEXE 10

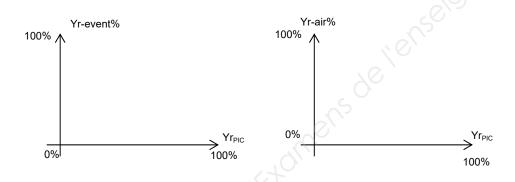
BTS CONTRÔLE INDUSTRIEL ET RÉGULATI	Session 2018	
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 20/24


DOCUMENT RÉPONSE N°1(à rendre avec la copie)

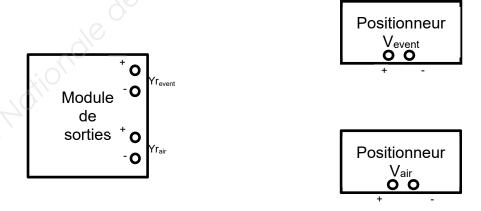
Réponse en boucle ouverte : Évolution de la concentration de pate à un échelon de10 % sur le signal de commande de V1

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION	Session 2018	
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 21/24

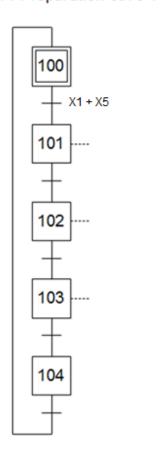

DOCUMENT RÉPONSE N°2 (à rendre avec la copie)

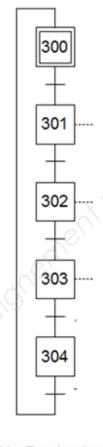

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE		Session 2018
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 22/24

DOCUMENT RÉPONSE N°3(à rendre avec la copie)

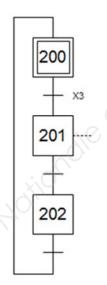

Régulation pression caisse de tête : schéma TI à compléter

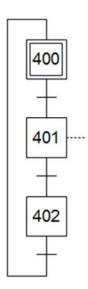
Régulation pression caisse de tête : schéma de partage des deux vannes


Régulation pression caisse de tête : schéma de câblage électrique


BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE		Session 2018
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 23/24

DOCUMENT RÉPONSE N°4 (à rendre avec la copie)


GT1: Préparation cuve 1


GT3: Préparation cuve 2

GT2: Production cuve 1

GT4: Production cuve 2

BTS CONTRÔLE INDUSTRIEL ET RÉGULATION AUTOMATIQUE		Session 2018
Analyse d'une installation d'instrumentation, contrôle et régulation	Code : CA52AII	Page 24/24